Wir nutzen Cookies, um Ihren Besuch auf unserer Website und unseren Service zu optimieren.
Wir betrachten die weitere Nutzung unserer Website als Zustimmung zu der Verwendung von Cookies.
Weitere Informationen finden Sie hier:
Datenschutzerklärung, Impressum
PortalDerWirtschaft.de


<
Suchmaschinenoptimierung
mit Content-Marketing - Ihre News
PROKODA GmbH | 18.06.2020

IBM KM423G - IBM InfoSphere DataStage v11.5 - Advanced Data Processing


Kategorie:
Zeitraum:
PLZ/Ort:
Seminare, Workshops
07.05.2018 - 08.05.2018
DE-20095 Hamburg

Seminarbeschreibung:

Key topics

Unit 1 –Accessing databases

Topic 1: Connector stage overview

· Use Connector stages to read from and write to relational tables

· Working with the Connector stage properties

Topic 2: Connector stage functionality

· Before / After SQL

· Sparse lookups

· Optimize insert/update performance

Topic 3: Error handling in Connector stages

· Reject links

· Reject conditions

Topic 4: Multiple input links

· Designing jobs using Connector stages with multiple input links

· Ordering records across multiple input links

Topic 5: File Connector stage

· Read and write data to Hadoop file systems

Demonstration 1: Handling database errors

Demonstration 2: Parallel jobs with multiple Connector input links

Demonstration 3: Using the File Connector stage to read and write HDFS files

Unit 2 – Processing unstructured data

Topic 1: Using the Unstructured Data stage in DataStage jobs

· Extract data from an Excel spreadsheet

· Specify a data range for data extraction in an Unstructured Data stage

· Specify document properties for data extraction.

Demonstration 1: Processing unstructured data

Unit 3 – Data masking

Topic 1: Using the Data Masking stage in DataStage jobs

· Data masking techniques

· Data masking policies

· Applying policies for masquerading context-aware data types

· Applying policies for masquerading generic data types

· Repeatable replacement

· Using reference tables

· Creating custom reference tables

Demonstration 1: Data masking

Unit 4 – Using data rules

Topic 1: Introduction to data rules

· Using the Data Rules Editor

· Selecting data rules

· Binding data rule variables

· Output link constraints

· Adding statistics and attributes to the output information

Topic 2: Use the Data Rules stage to valid foreign key references in source data

Topic 3: Create custom data rules

Demonstration 1: Using data rules

Unit 5 – Processing XML data

Topic 1: Introduction to the Hierarchical stage

· Hierarchical stage Assembly editor

· Use the Schema Library Manager to import and manage XML schemas

Topic 2: Composing XML data

· Using the HJoin step to create parent-child relationships between input lists

· Using the Composer step

Topic 3: Writing Hierarchical data to a relational table

Topic 4: Using the Regroup step

Topic 5: Consuming XML data

· Using the XML Parser step

· Propagating columns

Topic 6: Transforming XML data

· Using the Aggregate step

· Using the Sort step

· Using the Switch step

· Using the H-Pivot step

Demonstration 1: Importing XML schemas

Demonstration 2: Compose hierarchical data

Demonstration 3: Consume hierarchical data

Demonstration 4: Transform hierarchical data

Unit 6: Updating a star schema database

Topic 1: Surrogate keys

· Design a job that creates and updates a surrogate key source key file from a dimension table

Topic 2: Slowly Changing Dimensions (SCD) stage

· Star schema databases

· SCD stage Fast Path pages

· Specifying purpose codes

· Dimension update specification

· Design a job that processes a star schema database with Type 1 and Type 2 slowly changing dimensions

Demonstration 1: Build a parallel job that updates a star schema database with two dimensions

Objectives

·Use Connector stages to read from and write to database tables

·Handle SQL errors in Connector stages

·Use Connector stages with multiple input links

·Use the File Connector stage to access Hadoop HDFS data

·Optimize jobs that write to database tables

·Use the Unstructured Data stage to extract data from Excel spreadsheets

·Use the Data Masking stage to mask sensitive data processed within a DataStage job

·Use the Hierarchical stage to parse, compose, and transform XML data

·Use the Schema Library Manager to import and manage XML schemas

·Use the Data Rules stage to validate fields of data within a DataStage job

·Create custom data rules for validating data

·Design a job that processes a star schema data warehouse with Type 1 and Type 2 slowly changing dimensions


Voraussetzung: DataStage Essentials course or equivalent.

Preis: 1290,- € (zzgl. MwSt.) pro Teilnehmer.

Uhrzeit: Von 09:00 bis 16:00

Teilnehmergruppe: 3 bis 8

Dauer in Std: 16

Frühbucher: Preis: 1264.2 € bis zum 06.04.2018 reservieren.


Zur Veranstaltungsseite: https://www.prokoda.de/

Unternehmenseintrag: PROKODA GmbH

Eingestellt am: 18.06.2020 von: .

Weitere Events von PROKODA GmbH: