info@PortalDerWirtschaft.de | 02635/9224-11
Suchmaschinenoptimierung
mit Content-Marketing - Ihre News
Universität Bayreuth Forschung |

Bayreuther Forscher züchten Nervenzellen im Reagenzglas

Bewerten Sie hier diesen Artikel:
0 Bewertungen (Durchschnitt: 0)


Zebrafische besitzen die ungewöhnliche Fähigkeit, neue Nervenzellen zu bilden und dadurch abgestorbene oder beschädigte Nervenzellen zu ersetzen. Bayreuther Forschern ist das jetzt in vitro möglich.

Einem Forschungsteam um Prof. Dr. Stefan Schuster am Lehrstuhl für Tierphysiologie der Universität Bayreuth ist es gelungen, großflächige Kulturen aus Zebrafisch-Nervenzellen anzulegen, die ein genaues Studium der Regenerations-Prozesse erlauben. Damit ergeben sich vielversprechende neue Möglichkeiten für die neurobiologische und biomedizinische Forschung.



Beschädigte menschliche Nervenzellen in möglichst großem Umfang reparieren oder ersetzen zu können, ist ein Ziel, auf das die Medizin weltweit hinarbeitet. Dabei sind Zebrafische von besonderem Interesse. Denn sie besitzen die ungewöhnliche Fähigkeit, neue Nervenzellen zu bilden und dadurch abgestorbene oder beschädigte Nervenzellen zu ersetzen. Es wäre für die neurologische Forschung eine wertvolle Unterstützung, wenn sie diese Prozesse nicht nur an lebenden Zebrafischen beobachten, sondern auch im Reagenzglas reproduzieren und untersuchen könnte. Doch die bisherigen Verfahren, mit denen Nervenzellkulturen von Zebrafischen künstlich angelegt wurden, haben sich als sehr arbeits- und zeitaufwändig erwiesen. Zudem waren die Bemühungen, solche Zellkulturen zu standardisieren und dadurch die Versuchsbedingungen zu vereinheitlichen, bisher wenig erfolgreich. Selbst die fluoreszenzaktivierte Zellsortierung (FACS), eine in der Zellbiologie verbreitete Methode, führt nicht zu den gewünschten Ergebnissen.



In "Scientific Reports": Eine neuartige Anwendung eines bewährten Verfahrens



Mithilfe eines bewährten Verfahrens ist es einem Forschungsteam am Lehrstuhl für Tierphysiologie der Universität Bayreuth aber jetzt gelungen, großflächige Kulturen aus Zebrafisch-Nervenzellen anzulegen, die ein genaues Studium der Neubildung und Regeneration solcher Zellen erlauben. Die Wissenschaftler um Prof. Dr. Stefan Schuster haben die magnetisch aktivierte Zellsortierung - die unter dem rechtlich geschützten Namen "MACS" (Magnetic-Activated Cell Sorting) bekannt ist - erstmals auf Nervenzellen von Zebrafischen angewendet. Über ihre vielversprechenden Ergebnisse berichten sie im Wissenschaftsmagazin "Scientific Reports".



Magnetische Partikel ermöglichen das Aussortieren determinierter Stammzellen



Aus sterilisierten Zebrafisch-Embryonen wurde zunächst eine gemischte Zellkultur eingerichtet. Diese Zellkultur enthielt also sehr verschiedene Arten von Zellen, darunter auch sogenannte "neuronale Vorläuferzellen". Hierbei handelt es sich um unreife Nervenzellen, die aus neuronalen Stammzellen hervorgehen. Sie sind - im Unterschied zu diesen pluripotenten Stammzellen - bereits für einen bestimmten Funktionsbereich, beispielsweise das Gehirn oder die Wirbelsäule, vorgeprägt und werden daher auch als "determinierte Stammzellen" bezeichnet.



Charakteristisch für die neuronalen Vorläuferzellen ist ein Molekül mit dem Namen "PSA-NCAM". Dieses Molekül konnten die Bayreuther Wissenschaftler daher als geeigneten Ansatzpunkt für das MACS-Verfahren identifizieren. In die gemischte Zellkultur haben sie winzige magnetische Partikel (MicroBeads) eingebracht, die zuvor mit speziellen Antikörpern beschichtet worden waren. Diese Antikörper ,erkannten' die in der Zellkultur enthaltenen PSA-NCAM-Moleküle und gingen mit ihnen eine chemische Verbindung ein. Somit waren die magnetischen Partikel an die neuronalen Vorläuferzellen gleichsam angekettet. Nun wurde die Zellkultur durch einen säulenförmigen Behälter gespült, der von einem starken Magnetfeld umgeben war. Dieses Magnetfeld bewirkte, dass die neuronalen Vorläuferzellen - und nur sie - im Behälter ,festsaßen', während alle anderen Zellen ihn wieder verließen. Auf der Grundlage der aussortierten Vorläuferzellen wurden nun großflächige Zellkulturen angelegt, aus denen sich im Labor voll funktionstüchtige Nervenzellen entwickeln können.



Effizient und kostengünstig - ein vielversprechender Weg für die biomedizinische Forschung



"Die von uns konzipierte und erfolgreich getestete Anwendung des MACS-Verfahrens auf Vorläuferzellen von Zebrafischen hat sich als sehr effizient und zugleich als kostengünstig erwiesen", resümiert Georg Welzel, der die Experimente durchgeführt hat. "Zeitaufwändige manuelle Arbeiten sind hauptsächlich nur bei der Gewinnung der Zebrafisch-Embryonen erforderlich, aus denen zunächst die gemischte Zellkultur gebildet wird. Das anschließende Aussortieren der neuronalen Vorläuferzellen ist ein weitgehend automatisiertes Verfahren."

Prof. Schuster ist daher zuversichtlich, dass das Verfahren künftig weitere Verbreitung finden wird: "Damit ergeben sich vielversprechende Möglichkeiten für die neurobiologische und biomedizinische Forschung, die hoffentlich schon bald und besser als heute in der Lage sein wird, menschliche Nervenzellen wiederherzustellen oder durch neues Gewebe zu ersetzen." Ein weiterer Schritt könne beispielsweise darin bestehen, das MACS-Verfahren auf die neuronalen Vorläuferzellen anzuwenden und aus ihnen genau diejenigen Zellen zu isolieren, die für Hirnfunktionen vorgeprägt sind. "Auf diese Weise könnten spezialisierte Zellkulturen eingerichtet werden, die beispielsweise für die Forschungen zur Parkinskon- oder Alzheimer-Erkrankung wertvolle Unterstützung leisten", meint der Bayreuther Tierphysiologe.



Forschungsförderung



Die Deutsche Forschungsgemeinschaft hat die in "Scientific Reports" veröffentlichten Forschungsarbeiten im Rahmen eines Reinhart Koselleck-Projekts unterstützt. An einigen Entwicklungsarbeiten war auch die Friedrich Baur BioMed Center gGmbH beteiligt, die von Daniel Seitz und Prof. Dr. Stefan Schuster geleitet und von der Friedrich Baur Stiftung in Burgkunstadt gefördert wird.



Veröffentlichung



Georg Welzel, Daniel Seitz, and Stefan Schuster,

Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures,

Scientific Reports 5 : 7959, DOI: 10.1038/srep07959



Ansprechpartner

Prof. Dr. Stefan Schuster

Lehrstuhl für Tierphysiologie

Universität Bayreuth

D-95440 Bayreuth

Tel.: +49-(0)921 / 55-2470 und -2471

E-Mail: stefan.schuster@uni-bayreuth.de


Für den Inhalt der Pressemitteilung ist der Einsteller, Herr Christian Wißler (Tel.: (+49) 0921 / 55-5356), verantwortlich.

Pressemitteilungstext: 777 Wörter, 6703 Zeichen. Als Spam melden

Unternehmensprofil: Universität Bayreuth Forschung


Kommentare:

Es wurde noch kein Kommentar zu diesem Thema abgegeben.



Ihr Kommentar zum Thema





Weitere Pressemitteilungen von Universität Bayreuth Forschung lesen:

Universität Bayreuth Forschung | 08.04.2016

Universität Bayreuth: Internationaler Spitzenplatz im THE-Ranking

Die Universität Bayreuth erzielt im internationalen Vergleich junger Universitäten einen Spitzenplatz und baut ihre Top-Position weiter aus. Dies zeigt das neue Ranking ‚150 Under 50' der Times Higher Education (THE), das weltweit die 150 besten ...
Universität Bayreuth Forschung | 24.02.2016

Universität Bayreuth: Die Zukunftsfabrik in Oberfranken

Die Universität Bayreuth startet für kleine und mittelständische Unternehmen ein in Deutschland bisher einzigartiges Vorhaben auf dem Gebiet des Technologietransfers. Im Projekt "Oberfranken 4.0" erhalten Unternehmen die Möglichkeit, die vielfäl...
Universität Bayreuth Forschung | 19.02.2016

Universität Bayreuth: Kostenfreier Zugang zu Datenbanken

Die Oberfrankenstiftung fördert die Anschaffung wichtiger betriebs- und volkswirtschaftlicher Datenbanken an der Rechts- und Wirtschaftswissenschaftlichen Fakultät. Studierende und Forschende der Universität Bayreuth erhalten einen uneingeschränk...